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ABSTRACT

The main goal of th.s research is to model a flexible missile with structural
flexibility utilizing the Equivalent Rigid Link System (ERLS) with an enhanced
natural mode discretization. Dynamic analysis of the flexible missile in

2-Dimension motion is presented.
Computer simulation is performed where the pitch angle of the missile is
controlied with a rgid-body controller. The effects of increasing payloads and

speed to the system performance are discussed.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research
may not have been exercised for all cases of interest. While every effort has been
made, within the time available, to ensure that the programs are free of compu-
tational and logic errors, they cannot be considered validated. Any application
of these programs without additional verification is at the risk of the user.
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I. INTRODUCTION

A. BACKGROUND

With the introduction of long slender missiles such as the Vanguard, the
Redstone, and various ballistic missiles, the problem of the structural flexibility
became severe [Ref. 1]. Due to the limited thrust available from rocket engines,
these missiles had to be as light as possible.This meant a sacrifice in structural
rigidity.

Missile flexure causes additional aerodynamic loads which in turn cause ad-
ditional flexure. Coupling occurs between the elastic modes and the control sys-
tem as the control system gyros sense the flexure motion and the rigid body
motion. It has become necessary to actively control the flexible structure and
thereby reduce the structural loads and improve the vehicle response such as po-
sition, velocity and acceleration. Reduced structural loads will also offer potential
for reduced bending stress and fatigue problems.

The objective of this thesis is to develop a dynamic model for a flexible missile
and study the dynamic behavior of the flexible raissile. Simulation is a valuable
tool in the design of new missile systems and in the modification or evaluation
of existing systems. A missile simulation allows the engincer to evaluate his design
without the expense of actually building and flying the actual missile. System
dynamics can be investigated through simulation with a substantial savings in

time and expense [Ref. 2].

B. LITERATURE REVIEW

Flexible missile modeling centers on the relationship between the large, rigid-
body motion and the small motions due to structural flexibility.

Jenkins [Ref. 2] expresses some techniques used in deriving the equatiuas of
motion of a rigid missile for a six degree-of-freedom (6-DOF) simulation. The
rigid missiles are characterized by their larger size and low ratio of payload to
total weight.  Rigid missile dynamic equations were developed using the

Newton-Euler Method. The moments and forces along with the mass and wio-



ments of inertia are assumed to be known in the body coordinate frame. The
transformation between global and local coordinate frame is achieved with a
non-homogenous coordinate transformation matrix [Ref. 3: pp. 342]. The result-
ing rigid-body equations of motion producec the understanding for the derivation
of the dynamic equations of the flexible missile.

The Equivalent Rigid Link System [Ref. 4] describes the large-motion
kinematics of the system by the ERLS motion and the small motion relative to
the ERLS. The application of the finite element techniques and Lagrangian dy-
namics produces two sets of coupled, nonlinear, ordinary differential equations
of motion, of which one set is for the large motions and the other set for the small
motions. The small motion is described by the superposition of vibration modes.
The nodes of the vibration of the flexible bar was derived with the simple-bcam
theory [Ref. &: pp.221]. In simple beam theory, it is assumed thai the rotation of
the element is insignificant compared to the vertical translation and the shear
deformation is small relative to the bending deformation. This assumption is valid
if the ratio between the length of the bar and its height is relatively large (more
than 10). The set of large motiont equations are non-lincar in both the large and
small motion variables while the set of small motion equations are linear in the
small motion variable and non-linear in the large motion variables. A solution
techaique called the Sequential Integration Method [Ref. 6] was developed which
allows efficient simulations of sysiems with inertia coupled motions having non-
linear slow motion (large motion) with linear fast moton (small motion). The
ERLS model presents a complete, efficient dynamic model able to describe large
motion, small motion and their coupling.

An ERLS model of a flexible spacecraft boom was developed and a computer
simulation was performed [Ref. 7). The equations of motion were solved using
the Sequental Integration Method. A spatial tinite discretization of the booin
structure and the application of an assumed polynomial modal response were
utilizey in the approximate solution to the equations of motion. This work was

the basis work for the modeling of the flexible missiles.
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Ganon {Ref. 8] performed an experimental validation of the ERLS dynamic
model in a vertical plane motion. The small motion was modeled using a shape
matrix derived from superposition of natural modes. The agreement between the
simulation results and the experimental results justify the application of the
ERLS using a natural-mode shape matrix to model the dynamic response of

flexiole missile.

C. OUTLINE

In this study, the ERLS dynamic model is used to derive the system equations
of motion for a flexible missile in 2-D motion. Dynamic response is predicted by
solving the equations of motion using the Sequential Integration Method. The
application of an assumed natural mode shape and the spatial finite element
discretization of the missile provide an approximate solution. Computer simu-
lation for the flexible missile is performed using MATLAB on the MACINTOSH
computer. A rigid body controller is included in the simulation to control the
pitch angle of the flexible missile.

The ERLS dynamic model of the flexible missile is presented in Chapter Two.
A rigid body controller for the flexible missile is described in Chapter Threce. The
computer simulation methodology and simulation results are presented in Chap-
ter Four. The conclusions and recommendations for future work are presented

in Chapter Five.




Il. MODEL FORMULATION FOR A FLEXIBLE MISSILE

A. KINEMATICS
In our model, 2-D inertial reference frame, i.e., X and Y, is used for the global

motion as shown in Fig.l. The body-fixed coordinate frame, i.e., X and y, is sc-

lected to describe the missile local motion.

x=Local x axis
y=Local y axis
X=Global X axis
Y=Globai Y axis
L=Missile Length
D=Missile Diameter

X
.

Figure 1. The general configuration of the missile

The foliowing assumptions were made for the flexible missile:
(1) Material density is constant throughout the body and the steel was chesen

for modeling.
(2) A uniform circular cross section is assumed.

The geometric configuration paramaters and material properties of the flexi-

ble missile are listed as




Diameter =0.12 meter
Length =4.0 meter
Material Density =7861.05 kg/m?
Young's Modulus=2.0 x 10" pascal
The concept of the ERLS is applied ‘0 model the kinematics of flexitle mis-
sile. The main idea of the Equivalent Rigid Link System (Fig.2) is to separafe the
~ kinematics of the flexible body into large and small motions.

s

Missiie Base Defiection

O(0) = Misslie Base Slope
v{L) = Missile Tip Deflection
B(L) = Missile Tip Slope
Y E = Global Position Vector
4 - of Missiie Base
R, =_ Absolute Position Vectoi
of the base of ERLS
r = Local Position Vector
E = Defermation Vector
= Equivaient Rigid Link
resmmew = Theovetical Missile
> Posgltion

.

~ Figure 2. Equivalent Rigid Link System (ERLS)




The large motion of the missile will be represented by missile base pusition in
X direction X;, missile base position in Y direction Y, and missile pitch angle 6.
The small motiors resulting from flexible motion are measured relative to the lo-
cal coordinate frame X, y. v(0) and ®{0) are the nodal displacement ana slope
of the missile base respectively. The absolute (global) position of 2 point on the
flexible missile is obtained from ccordinate transformations. The global position
(R) of any point position can be defined using ERLS in terms of a iocal positicn
vector (r), a deformation vector (3), and a coordirate transformatien matrix (W),

ie.,
R=WF +d) (2-1)

The transformation matrix (W) between the large raotion and small inotion co-
ordinate is

1 0 0
W=|X, cos(€) sin(6) (2=2)
Yo sin{d) cos(6)

and the local rigid body position vector is
.
r=1x (2 —-3)

The deformation vector (d) is expressed in terms of a nodai displacement
vector U and a shape function ¢ as

d=¢U Q2 — 4)

where

U=[v0) ®©0)]1" (2 —5)




The shape function ¢ was derived utilizing a natural-mode superposition and
a finite element concept. The Finite Element Method (FEM) was utilized to
discretize the flexible body displacements and assigning the nodes. Dispiaceinents
are for each peint along the missile, 4 function of location and time, and it is
necessary to discretize the deformations to obtain an ordinary differential
equation. The natural mede shape function of a beam is usad to represent the
flexural motion of the flexible missile. Only the first two mode shapes are used.
The flexible missile is modeled as a continuous Euler-Bernoulli free-free beam,
neglecting shear deformation and rotary inertia effects. The nodal points are the
base points of the flexible missile. Appendix A shows the mode shape function

derivation. In this case, ¢ is found as,

00

¢=[00 (2 —6)
a b

where a and b are defined as following,

a = F|(Cy(cos B,x + cosh f;x) + {sin B;x + sinh f,x))

+ F3(Cy( cos fx + cosh fx) + (sin f,x + sinh f,x)) (2-7)

b= F3(C( cos By« + cosh fyx) + (sin f;x + sinh f;x))

+ F4(Cy(cos 8,x + coch fx) + (sin Byx + sinh £,x)) (2 -8)

Lagrangian dynamics is used to acquice the equations of motion and the
kinetic energy of the system will be needed in the development of the Lagrangian

expression. The absolute velocity is listed as follows,

R=WF +d)+wd 2-9)




B. KINETICS
Lagrangian Dynamics is a'systematic way to derive equations of motion for

complex systems like flexible missiles. Lagrange’s equation is written as,

d , OKE 0KE JPE _ . _
dt ( aq‘ ) aql + aq‘ - Qi (‘ - 1,2,...,’2) (2 10)
where

K.E. == Kinetic Energy

P.E. = Potential Energy

g, = Generalized coordinates

Q. = Generalized forces

n = Number of degrees of freedom

The generalized coordinates are chosen to be,
7=[X Yy 6 v0) ®©0)]" 2-11)

The Kkinetic energy of the system is defined as follows,

[RTRdm 2-12)

By substituting Eq.(2-1) into Eq. (2-12), the kinetic energy is written as

KE=— [¢TWTWF + 2rTWTWeU + 2" WTweU

+ UT™WTWoU + 20T¢™WTwoU + UTeTwTw o U)dm 2 - 13)

The potential energy of the system inciudes the strain energy of the flexible

missile and the gravitational potential energy.

P.E == [UTTCrUdx - [RTg dm 2 - 14)




{
where

[ = Spatial derivative of the shape function

C = Rigidity Matrix

g = Gravitational acceieration vector ‘

Appendix B includes the development of the equations of motions using
l.agrange equations.

Generalized forces will be found by virtual work principle. It is assumed that
. the only force is the thrust force which is applied to the base of the flexible missile
as shown in Fig.3. Other forces like aerodynamic and damping forces are neg-

lected.

Equivalent Rigid Link
System

— | Deoretical Missile
Position

T= Applied Force

—— amsw  weww  mm— 0

Figure 3. Applied Forces on Flexible Missile

T'hxhrust force is composed of two components i.e.,

T, = T cos(d + O(0)) (2-15)




T, = Tsin(é + ®(0)) (2 —16)
and ¢ mcment applicd on thie missile is,
My = —T cos(é + D(0))v(0) 2-17)

By applying virtual work principle, the generalized forces of flexible missile is

found below.

T cos(0) — T sin(8) — TP(0) sin(6)

Fy = | Tsin(6) + T5 cos(9) +Td(0) cos(6) 2 - 18)
—T(0)
- [75+ T®(0) -
F,= (2-19)
~Tv(0)
where
T = Force

0 = Control Angle being assumed small

17‘; = Large motion generalized force vector

f:l, = Small motion generalized force vector

Appendix C shows the derivation of the generalized forces using the Virtual
Work Principle.

The derivation of the equations of motion from the Lagrangian forinulation
yields two sets of coupled equations. One set describes the large motions and the
another set describes the small motions. These two sets of equations are non-

linear, coupled, second-order, ordinary differential equations of the form,

Mg ¢+ M, U =F, (2 - 20)




— —

My &+ My U+ G, U+ K, U =F, @ - 21)

where:

M, = 3x3 effective inertia matrix for large motions

M, = 3x2 coupled inertia matrix ¢f the small motion effect on large
motions

17',, = 3x1 load vector for the large motions

M, = 2x3 coupled inertia matrix of the large motion effect on small
motions

M, = 2x2 effective inertia matrix for small motions

G, = 2X2 gyroscopic matrix

K, = 2x2 stiffness matrix

:,, = 2x1 load vector for the small motions

E = 3x1 vector, generalized coordinates of the large motions

U = 2x1 vector, generalized coordinates of the small motions

The detailed development of the equations of motion and definitions of the terms

are described in Appendix B.
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1iI. THE DEVELOPMENT OF A RIGID-BODY CONTROLLER

In our research, the controlier is developed based on the rigid-body assump-
tion. The purpose of including the rigid-body controller is to perform computer
sinulation and study the dynamic behavior of the flexible missile. The pitch an-
gic of the missile is controlled by the rigid-body coniroller which is a single input
single output (SISO) controller. A general configuration of the flezible missile

and rigid-body countroiler are shown in rig.4.

(@) ()

Desired Error . ()]

Pitch s$i | Controtl FPuch
na

Angl 9 Rigid-Body] Angle | Flexible |Angle

Controller ®) Missile

-

Figure 4. The flexible missile with rigid-body controller

The pitch angle is the control variable and the desired states are desired pitch
angle 0,, desire¢ angular velocity 6,, and desired angular acceleration 8, The
control angle (J) is assumed small.

The desired error function is defined as
E+ Ki+ Kie=0 (-1

where,




K, = The position fe:dback gain.
K, = The velocity f:edback gain.

The ¢rror in the position.

cn
]

6 -6,
0 — 6, = The zrror in velocity.
6—9,

= The error in acceleration.

o
!l

The con.rel desigu begins with the equation of rigid-body (large motion) that

is ebtained by modifying and expanding Eq.(2-20) as

My My | N 5, )
[“"21 Mz?]l:"?z] lfzj' [ J+O[b2:l (3-2)

Where,
(M (1,1) M 1,2
:‘1“ — qq( ’ ) ¢ qq( ) (3 — 3)
_qu(z,l) qu(2,2)
M _(1,3)
My =0 (3-4)
Afqu(2,3)
Myy = [qu(3,3)] (3—-06)
DA
== 37
m I:Y[):I ( )
ny=[0] (3—-3)

i =Gravity, centrifugal and coriolis forces.

S, =Gravity, centrifugal and coriolis forces.

13




i T cos(0) , (3 —9)
Y7 Tsin(0)
hy = [0]
1-;1 _ [—Tsin(@):’ (32— 10)
T cos(0)
b, = 0]

Eq.(3-2) can be rewritten in a tensor form as

My + My, =f+h + 5.15 3—-11)
My, + Myny = f3 (3-12)

From Eq.(3-11),
0y = ‘wl_ll[f—:l + ;1 + [715 - Muﬁz] 3-13)

Substituting Eq.(3-13) into Eq.(3-12), we find,

A—;;;z -~ F — B§ (3 - 14)

Where,

A= My — MyM{' M), (3 —15)

F=f,— MyM[A + by ] (3 — 16)

B = My M5, (3-17)
14




Eq.(3-1) can be rewritten as
(6 -0+ K0 —0)+ K0 —07)=0 | (3 —18)
By substituting Eq.(3-14) into Eq.(3-18), we find the control angle (o)
5=-B"'[A(B;— K0 —0,) — K,(0 - 6,) —F] (3 —19)

The control angle (§) is a function of the pitch angle () , desired pitch angle

(8,), angular velocity (8), desired angular velocity (8,), desired angular acceler-

ation (0,), the position feedback gain Kp , the veiocity feedback gain K, and the

* matrices i.e., A, B, F. Since the thrust force T is included in F and B, the mag-

nitude of the thrust force will thus affect the control angle é . K, and K, are ad-
justable to obtain the desired response of the pitch angle 0.




IV. COMPUTER SIMULATION

A. SIMULATICON OBJECTIVES

In literature, the application of forces has been limited to gravity, aerodyna-
mic forces and thrust [Ref. 2]. No damping has been imnlemented. The thrust
and aerodynamic forces can be found fairly accurately with standard test and
design procedures such as static firings to obtain thrust versus time profies for
the engine and wind tunnel measurements to determine tihe aerodynamic forces.
Gravitational forces can be calculated rrom the knowiedge of the missile’s posi-
tion relative to the earth. The mass including fuel can be estimated from know-
ledge of the missile’s weight before and after burnout (from the measurements),
and by using a mathematical relationship (often linear) for the decrease in missile
mass over the engine burntime.

In this work, the missile’s weight is assurned constant and the aerndynamic
forces are zero The deformations resulting from the structural flexibility have
been assumed small and small control angle assumpiions are used in the rigid-
body controller design.

The primary purposc of this study is to complete the simulation of the flexibic
missile in 2-D motion, where the bending effect is consiagered to be the only flex-
ibiiity source and a rigid-body controller as developed in the last section s in-

cludnd.

B. SOLUTION TECHNIQUE

Many numerical integration technigues can be applied i the solution of the
equations of the mction. The main consideration in the selection ef the inte-
gration technique is the size of the time step necessaiy to integrate the equations
of motions with numerical accuracy and stability.

The type of the equations of motion {2-20, 2-21) in this research permits the
application of the Sequential Integration Method [Ref. 6]. The linear equitions
of small motions are integrated implicitly and the large motion solutions are ob-

tained using explicit integration method. The implicit methods are ctfective for




linear systemns with high frequencies and the expiicit methods are effective for
solving nonlinear systems with low fraquencies. The implicit method is especially
effective for linear systems having a wide range of frequencies of which only the
lower frequencies are excited. The size of the time step need only be chosen to
make thz solution of the excited modes sufficiently accurate. Explicit methods
are effective for large scale systems with low frequencies. Because of the low fre-
quencies, the size of the time step that we choose¢ .. stability need not be small.
In addition, the explicit method does not nccd iterative procedures, which are

time consuming for non-linear systems.

C. THE COMPUTER SIMULATION CODE

A high level computer language, i.e., MATLAB, was chosen to simulate the
missile system. The MATLAB was designed for matrix operations. The simu-
lation code was developed with modular MATLAB routines.

The simulation code can be divided into three levels : LEVEL 1 (an overview)
separates the code into primary portions of INITIALIZATION, PLANT DE-
SCRIPTION, INTEGRATION, SYSTEM CONTROL and OUTPUT. LEVEL
2 facilitates several subroutines for LEVEL 1. A listing of MATLAB routires
required for manipulation in LEVEL 2 is placed in LEVEL 3.

D. SIMULATION RESULTS

The computer simulation was performed with variable parameters which de-
terminc missile speed and controller bandwidth. These parameters include force
T, K, and K.

The simulation outputs will be presented in large motions, small motions and
control angle. The large motions are X;, ¥, and ¢ and the small motions are v(0)
and ®(0). The initial condition for all runs was the pitch angle of 45°. The sim-
ulation work was divided into two areas. First a siinulation was performed for
the rigid missile using the rigid-body controiler. These results were used as a
baseline for comparison with the results of the flexible missile using the rigid-body
controller svstem. Second a simulation was perforined for the {lexible missile and

rigid-bady controller system. Only the trajectory control will be discussed in the
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analyze of the dynamics of the flexible missile. The desired trajectory was spépi-
fied as | -

45° when 0.1 <1<0.1

8 ==]|45° - 112.5¢ when 0.1 <1t <0.4
0 when t = 0.4

The control angle is assumed to be limited to +/- 10 degrees (small angle) '
This restriction puts a saturation line to the control input.

Fig.5 represents the graphical results of the desired and actual trajectory for
the rigid missile and rigid-body contrqller;; The force (T) and controller band-
width () were 30000 N and 3 rad/s respectively. The dark black line and
dashed line represent the desired and actual tréjectory, respectively.. The control
~ - angle (6) is shown In Fig.6 and Figures 7-8 present the base positions (XpYp) in

large motion. . :, .

After presenting results for the rigid mzssﬂe with rigid- body controller the
dynamic behavior of the flexible missile Wu.h,ngld-body controller will be st.udied
next. The force (T) and controller bandwidth (e,) again were 30000 N and 3
rad/s, respectively. Fig.9 shows the desired and actual trajectory. The: control
angle Is presented in Fig.10. .Arter 0.1 sec, the missile Initially needs a control
angle Which is less than 10 degrees. The effects of small motion can be seen on
control angle clearly. The base deflection and slope are shown in Figures 11-12.°
There is no small motion effects on flexible missile between 0-0.1 sec because of
zero control angle and no force components. After 0.1 sec, the small motions are
excited and have an amplitude of 10-%. Figures 13-14 present the base positions
of the flexible missile in large motion. The laige motion behaves like the rigid- °
body motion, which implies that the bbupling effect between the large motion and
small motion is smali The dynamxc behavmr of the flexible missile is dommant
by the large motion in thi§ case since the bandwidth of the controller is low and
small motion is not sngmf cantly exmted
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Figure 8, The desived and actual trajectory for the rigid missile with rigid-body
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Figure 6. The control angle for the rigid missile with rigid-bedy controfler (T =
30000 N, w, = 3 vad/s)
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Figure 7. The large motion position X for the rigid missile with rigid-body controller
(T = 30000 N, w,=3 rad/s)
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Figure 8.

The lzrge motion position Y for the rigid missile with rigid-body controller
(T = 30000 N, w, == 3 rad/s)
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Figure 10. The control angle for the flexible missife with rigid-body controller (T
= 30000 N, w, = 3 rad/s)
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Figure 11.  The small motion position v(0) for the flexible missile with rigid-body
controller (T = 30000 N, w, = 3 rad/s)
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Figure 12. The small motior position phi(0) for the fexible missile with rigid-body
controller (T = 30000 N, w, = 3 rad/s)
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Cigure 13,

The large motion position X for the flexible missile with rigid-body con-
troller (T = 30000 N, w, = 3 rad/s)
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Figure 14.  The large motion position Y tor the fiexible missile with rigid-body con-
troller (T = 30000 N, w, = 2 rad/s)
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Two kinds of tests were performed to further the study of the dynamic be-
havior of the flexible missile.

The first test was to study dynamics due to the increase of the control system
bandwidth (w,). The desired and actual trajectory of the flexible missile with
rigid-body controller without saturation on the control angle is presented in
Fig.15. The force (T) is still 30000 N while the controller bandwidth (w,) is in-
creased to 200 rad/s. As the controller bandwidth is increased, the gap between
controller bandwidth and systzm natural frequency is smaller. The system will
be unstable at controller bandwidths close to the system fundamental frequency
which can be as high as 270 rad,s in this case. Note that the fundamental fre-
quency of tine simple beam with free-free boundary conditions was calculated as
w,, =209.2053 rad/s, and the missile’s fundamental frequency will be increased
due to the coupling between large and smali motion. The control dyramics in-
terfere with the structural dynatnics. The higher control frequency with the
bandwidth of 300 rad/s significantly excites the small motion of the structure.
The graphs of control angle and the small motions and large motions of the rais-
sile base (Figures 16-17-18-19-20) show the unstable state.

The bandwidth cf the controller must be set much lower than the funda-
mental frequency of the missile in order to use the rigid-body contrel. This implies
that the pitch-angle response speed, which is determined by the control band-
width is limited. To keep the response speed, the missile structure must be de-
signed sufficiently rigid to possess a high fundamental frequency. On the other
hand, the missile payload will affect the natural frequency of the missile structure
with the heavier the payload, the lower the fundamental frequency of the missile.

Therefore, the payload must be limited to achieve high-speed control response.
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Figure 15. The desired and actual trajectory for the flexible missile with rigid-body

controller without satusation on the control angle (T = 30000 .1, w,
- = 300 rad/s)
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Figure 16.  The control angle for the flexible missile with rigid-body controller
without saturstion on the control angle (T = 30000 N, w, = 300
rad;s)
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Figure 17. The small motion position v(0) for the flexible missile rigid-bady con-
troller without saturativn on the controi angle (T = 30000 N, w, =

300 rad/s)
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Figure 18.

The small motion position phi(U) for the flexible missile rigid-body con-
troller without saturation on the conirol angle (T = 30000 N, w, =
300 rad/s)

33




! ! ! ! ! L §
L SRS H {8
ST ST T SUUOTOOOS SOV e 9
=
=
703 § : vy
P b b e ~—
d —
=
Z E
Q) s 2
o ;:
80) ST SOV SOSURRUUUN: SOV 1
d" T T U T T ST A S TP 5 .............................. O
2 :
‘é’ i
A R P T T . |2
P
g
ot H
" 1 1 i 1 ] 1 ] )
\Ve] «r (o] (o] [~ 4] \Ye} <t (o] <
] — - i

(WINOLLISOd X 'TVEOTO

Figure 19.

The large motion position X for the flexible missile rigid-bedy controller
without saturation on the control angle (T = 30000 N, w, = 30C
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Figure 20.  The large motlor position Y for the flexible missile rigid-body controller
without saturation on the centrol angle (T = 230000 N, w, = 306
rad,s)
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Fig.z1 presents the desired and actual trajectory of the flexible missile using
rigid-body controller with a saturation (+/-10 Degrees) on the control angle. The
force (T) and controlier bandwidth {w,) are 30000 N and 200 rad/s, respectively.
A better trajectory tracking is obtzined, however the actual trajectory is osciliat-
ing about the desired trajectory which is mainly due to the switching of the con-
trol angle between the saturation lines. Fig.22 shows the control angle, and
Figures 23-24 show the small motion displacement and slope of the base of the
flexible missile. it was observed that the switching of the control angle between
+/-10 degrees causes increased excitation of small motions. Figures 25-26 pre-
sents the position of missile base in large motion where the large motion is no
longer dominated bv the rigid-body motion.

The second test was to study the dynamics of the flexible missile due to an
increase of the missile speed. To increase the speed of the missile, the thrust force
was increased. Fig.27 presents the actuai and desired trajectory of flexible mis-
sile. The force was 60000 N and controller bandwidth was 3 rad/s. As seen from
Fig.27, the pitch-angle response is determined directly irom the baudwidth of the
coatroller. The increased missile speed does not change the pattern of the pitch-
angle response. The control angie of the flexible missile is shown in Fig.28. The
control angle is affected by the increased speed. When the speed is increased, the
control angle gets smaller because a smaller control angle generates a sufficient
correction to the pitch angle. The increased missile speed has little effect on small

motions (Figures 29-30). Figures 31-32 show the large motious.

36




0.4

0.35

o
o
P
3 3
6 o
m .
s ~
< D)
% o
2 g g
] H
[®) 20
O
(48] 4
% s =
.
z S
v
s i S
E =
1 :L - { ;.L [ 1 i 1 o
=) ) [P o

(SYOAINOLLISOd AV INONY

Figure 21. The desired and actual trajectory for the flexible missile using rigid-body
controller with saturation on the control angle (T = 30000 N, w,
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Figure 22. The control angle for the flexible missile using rigid-body controller with
saturation on the control angle (T = 30000 N, w, = 200 rad/s)
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Figure 23,

The small motion position v(0) for the flexible missile using rigid-body
controller with saturation on the control angle (T = 30000 N, w, =
200 rad/s)
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Figure 24.  The small motion position phi(0) for the flexible missile using rigid -body
controller with saturation on the controi angle (T = 30000 N, @, =
200 rad/s)
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Figure 26. The large motion position Y for the flexible missile using rigid-body
controller with saturation on the control angle (T = 30000 N, w,
= 200 rad/s)
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Figure 27. The desired and actual trajectory for the tlexible missile using rigid-body
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Figure 28.  The control angle for the flexible missile using vigid-body controller with

increased speed (T = 60000 N, w, = 3 rad/s)
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Figure 29,

The small motion position v(0) for the flex’ble missile using rigid-body

controller with: increased speed. (T = (3400 N, w, = 3 rad/s)
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Tigure 30,

The smalil motion position phi(0) for the flexible missile using vigid-body

controlier with increased speed (T = 60000 N,w, =3 rad/s)
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V. SUMMARY

A. CONCLUSIONS
The development and computer simulation is presented for a bending flexible

nssﬂe wnth a rigid-body wntroller system movmg in a 2-D coordinate trame. In
this ,resaarch the dyndmxc model has beeri developed through the Equivalent
Rigid Link System utthimf L‘agrangran dynamics to obiain a type of system
equations of raotion suited for Sequentlal Iniegration Method that integrates
large motion explicitly and small motion implicitly. The spatial iinite element
discretization of missile structure and the application of trunceted natural modal
responses provide an approximate solution.

The analysis and simulation were performed to undersiand the dynamic be-

havior of a flexible missile using a rigid-body controller. It was found that the
controller bandwidth must be much lower than tac furdamental frequency of the .
missile in order tc use the rigid-body controller. The payload will affect the na-
tura! frequency of the missile structure i.e, when the payload is increased, the .
system fundamental frequency will be decreased. The paylcad must then be {im-
ited to achieve high-speed response. In order tc increase the payload and main-
tain higi-speed control respounse, a flexible-body controller is needed. |

-

B. RECCMMENDATIONS
Areas which remain to be investigated include :
1.Add the payload and aerodynamic effects to the model.
2.Design and study the Jcynamic behavior of a flexible missile with a
flzxible-body controlier in 2-I miotion.
3.build a flexible missile in a laboratory scaie and obtain experimental -ata.
4.Design and simulate a control system for flexible missiles in 3-7 motion.
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APPENDIX A. DERIVATION OF THE MODE SHAPE RESPONSE
MATRIX FOR THE FLEXIBLE MISSiLE

In this study, the natural rnode shape functions of a beam are used to repre-
sent t'ie flexural motinn of the flexible missile. Only the first twe mode shapes are
used. The flexible missile is modeled as a continuous Euler-Bernoulili frce-[ree
beani, neglecting shear deformation and rotary inertia effects.

The bar (Fig.33) has system parameters:

o

f(x,t)

m(x), Et{x)

A/;// ™ X
>l Ny . =" dx ~+'*"
- L e -

Figur2 33.  The Bar in Flexure

v(x,t) = Transversc dysplacement at any »oint x and time t
f(x,t) = Transverse force per vnit length

m(x) = The mass per unit length

w21(x) = Flexural rigidity

E - Young’s modulus of elasticity

I(x) =The cross-sectional area moment of incrtia

Q(x,t) =Shearing force

M(x,t) = Bending moment
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dx.

Fig.34 shows the free body diagram corresponding to a bar element of length

the inertia torque associated with rotation,

f(x,t) dx
3Q(x,t)
M(x,t) Q(x,t)
} =X
dx
- -3~
Q(x,*) Mo e 2000 g
y(x,t) ax -
Y
Figure 34. Free Body Diagram Corresponding to a Bar Element
The force balance of the free body is
0(x,t x,t
(0 + 2L 1) — 000 + imirax = miryax 25 (4-1)

 The moment equation of motion about the axis normal to x and y, ignoring




OM(x,) aQ(x,t)

Tx = dx] — M(x,t) + [Q(x,t) + x dx]dx

[(M(x,t) +

+ flx, f)dx —i‘gi =0 (4-2)

Canceling appropriate terms, ignoring terms involving second order terms in
dx and combining Egs. (A-1) and (A-2),

_PM(x,)

ax?

+f(xt)-w(xt)m (4-3)

Eq. (A-3) relates the bending moment M(x,t), transverse force f(x,t) and
bending displacement y(x,t).
The relation between the bending moment and the bending deformation is

2 !
Mxt) = Ein) 2220 (4 -4
ox

Inserting Eq. (A-3) into Eq. (A-4), we obtain the differential equation for the

flexural vibration of a bar,

2 2
i < (El(x) Fyx, ))+/(xt) M(x z)—a—M (4 - 5)

ox x ct

The bending moment and shearing force of the free ends (x=0, x=L) are

2810,
2
El(x)%’i’ilmﬁo El(x )———a—i-"—’)— et = (4-6)
0%y (x,
Lreng 250y, - Lo 25 =0 4-7)

Egs. (A-6) and (A-7) are called natural boundary cenditions.
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Considering the free vibration characterized by f(x,t) =0, using separation of

variables method and simplifying Eq. (A-5),

2 2
L e = = Wi (4-3)

Simplifyving the Eq. (A-8), for EI(X) =constant

dt
di—-ﬁ") - B*Y(x)=0 (4=9)
where [¢ = W;ZS)

The boundary conditions require that,
At x=0 (base)

d*y(:
(;) |x=0 =0
dx
53_Y_(;“l| =0 (4 - 10)
dx3 x=0
Atx=L (iip)
d*Y(x)
[ == =O
dx2 x=L
A’ Y(x)
'Td;}——lle‘=0 (A-11)

The general solution of Eq. (A-9),
Y(x) = C, sin(fx) + C, cos(fix) + C; sinh(fx) + C4cosh(fx) (A4 -12)

Taking the derivatives of Eq. (A-12), and substuting boundary conditions,
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Y(x) = C,(sin fx + sinh fx) 4+ Cy(cos fx + cosh fx) (4 -13)
Solving Eq. {A-13) yields,
cos fL cosh L =1 (4 —14)

The first five consecutive roots of this equation are;

ﬁl = 0.0
B, = 4.712388
B, = 7.853981

B, = 10.995574
B;=14.137166
Eq. (A-13) is now written in the following form,

Y,(x) = C,(cos f,x + cosh B,x) + (sin B, x +sinh f,x) r=1,2 (4 —15)
where:

sin 8,L — sinh f,L ,
C. = (4 — 16)
— cos f,L + cosh §,1.

The transverse displacement v(x) and slope @(x) can be represented in the

following forms respectively,

)= £ a1, (4 -17)
Dx) =2 (4 - 18)

v(x) = a;(Cy{ cos Byx + cosh f,x) + (sin fyx + sink fx))
+ a5(C,( cos Bax + cosh f,x) + { sin fyx + sinh f,x)) (4-19)

O(x) = a,(C,f,x + sinh f;x) 4 By(cos fyx + cosh fx))

+ a5(Cyf5( — sin fax + sinh §;3x) + (cos fi,x + cosh f,x)) (4 — 20)




Substituting the boundary conditions into shape function gives,

‘pi_ v(0) = 2a;C} - 2a,C, (A —21)
3 D) = 2a,8, + 2,0, (4 —22)
o The modal amplitudes g, and a;

< o C,f, <, .
| ay = ( 3¢ + Cle w(0) + E ®(0) (A4 -23)
f:-," 4= — -1 v(0) + —= B(0) (4 —24)
e 27 T CE £
to
. v = av(0) + H®(0) (A4 - 25)
a=F Y (x) + F;Yy(x) (4 — 26)
. b= F,1,(x) + Fy¥(x) (4 - 27)
: ] Cyf
. 172G C{"E
e
F. A=25
Iy CIE (4 2))
F3 Tl e —a—E— (14 b 30)
J A (4 - 31
4 E .
C
E=20,-2 R (4 - 32)
Cy

Substituting Eqs. (A-15), (A-16), (A-26), (A-27), (A-2R), (A-29}, (A-30),
(A-31), (A-32) into Eq. (A-25) yields arn expression for the transverse displace-
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ment of a flexible missile as a function of the missile base nodal displacements,
v(0) and D(0),

v(x,t) = [F{(Cy(cos Byx + cosh 1) + {sin f;x + sinh f,x))

+ F3(Cy(cos fyx + cosh fx) + (sin f,x + sinh f4x))v(0)

-+ [FR(Cy( cos fix + cosh fyx) + (sin Byx + sinh fyx))

+ F4(Cy( cos Byx + cosh Bax) 4 (sin fpx + sinh f,x))]10(0) (4 - 33)

This expression is differentiated twice to obtain v"(x), which is necessary for
the calcula:ion of the potential energv due to deformation and theoretical strain,

v'(x,1) = (F,(C B3( = cos B, x + cosh B,) + BE(—sin fyx + sinh f,x))

+ F3(CyB3( — 205 Byx + cosh f,) + B3( — sin f,x + sinh B,x))v(0)

+ (Fz(Clm( —c0s fyx + cosh ;) + ,Bf( —sin f;x + sinh ff;x})

+ F4(CyB3 = cos Byx + cosh fi;) + B3( - sin f,x + sinh §,x)))®(0) (4 — 35)

Now substitution of v(x) into the 2x1 deformation vector, d , yiclds the 3x2

shape {un :tion matrix, ¢, and the 2xi nndal ¢isplacement vector, U,

0 00j-
v(7) .
d=¢v= 0 |=]00 (4 -- 36)
®(0)
v(x) ¢ &t

The rhape function matrix is now in a form convenient for computer coding.
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APPENDIX B. DERIVATION OF THE EQUATIONS OF MOTION FOR
THE FLEXIBLE MISSILE

The ERLS is used to separate the flexible missile’s motion into a small motion
and a large metion. The large motion generalized coordinates are defined as X,
Y, theta (0)and the small motion generalized coordinates as U. The Lagrangian
Dynamiics are very helpful in the derivation of the equations of motion of com-
plex systems. U represents a column vector which has two elements. First one is
v(0) which is the nodal displacement of the flexible missile’s base and ®(0) which
is the slope cf the flexible missile’s base. We can represent the vector of the gen-

eralized coordinates by Eq. (B-1),
F=[ X Y61 U= 0 17 (B-1)

These generalized coordinates will be useG in the application of the Lagrange
equations to the equations of motion for both small and large motion cocrdinate

stems. The Lagrangian equations are defined in Egs. (E-2) and (B-3).

2KE dPE _

d OKE o ‘.
A £ q_ —F. (i=12 B -
ar [ ﬁfl ] aél + af[ F{x (l l» ,3) ( 2}
A LB KL UL, (B-3)
t - U U
U

where ¢, is a component of §
Using ERLS we can define the global position of the base position in terms
of the local position vector (r), a deformation vector (d). and a coordinate trans-

formation mawrix (W) with Eq. (B-4),

R=WF +4) (B -- 4)
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Continuing in the development of the equations of motions, we determine the
derivative with respect to time for global positions in order to obtain the kinetic
energy expressions.

R =W +d)+ Wd (B—5)

The kinetic and potential energy expresions follow. In this development we
have szperated the large and small motion energy contributions and will present

them seperately.

l (373 |
KE=E-JRTRdm (B — 6)
PE=-+fUTTTCT Udx — [RTg dm (B-7)

Redefining d in terms of the shape matrix ¢ (derivation of d is presented in

Appendix A ), we can rewrite Eq. (B-6) as

KE = —;_-j([w(? +d)y+ WA DWW 4 db + 1 d])dm (8 —8)
KE =+ [¢TWTWr + 2TWTWwel + 2 TwiweU

+ UToTWTWoU + 20To™TWTwe 0 + UTo™wTwe U )dm (B —9)

Continuing in the development of the equations of motion, we first express
the derivative of the kinetic energy with respect to the time rate of change of the

large motion coordinate ¢, Eq. (E-13), and then determine the time rate of change

of this expression, Eq. (B-14,. Since




E=1Y|=1&
¢ <3
W, = %I;(/ ?3% = Partial dcrivativg w.r.t. X
W,= —%—p% = —%?—:— = Partial derivative w.r.t. Y
W,= é:W = —aiﬁ = Partial derivative w.r.t. 0
' co o,y

W, = Partial derivative of W w.rt. X, Y, 0 i=1,2,3

TKE - 72 i T
RE - L Ly T L7 g LAYy
¢ ¢ 3¢ o,
- T - T
+2rTWr%2—V-<bU+7 L AR A AT Yy
C J i (;5‘

IT
+Ur(p7”/7 ch ¢>U+7U TaT OH 0”

a¢; G

Vo U ) dm

i

Putting Eq. (B-12) into Eq. (B-11) and simgplifying

AW _aw _ aw' _ew? _
o8, ¢ ! ¢, 9, !
AKE

el JGFTWIWF + 7w hweU + 7w U
i

+FTWTwel + UTe " WTWeU + UTe™wwed ) dm
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L (L) = [(FTWIWF + T 4 TR D
i

+ P whiveU + ?TW}W&.]' +rwlwgU

+FTWTW U + FTWTW U + FTWiWeU

+rT iU « FTwIweU + T Twiweu

+ UTSTWIweU + UTeTwliivgU + 5T¢TW"TW¢>5

+ UToTwWTweU + UTeTWwiwel + U7 Wiy

+ 0T WIweU ) am (B~ 14)

Firally we express the derivative of the Kinetic energy with respect to the

laige motion position as ¢,

& _ . " . . — —’ . . —
%Ké-f— = [(FTwiwr + YTl - 7T o U
i

+ WU + 7 W Tw U + UTeTW vl

+ UTeT Twoll + UTo wTiw,oU + UTo "W W, pU ) dm (B ~15)




2 OKE IKE =T Trie + TwTisit 2T wTisil
CENT RS\ S S B L S < Pl 7 728 # 7 W W Wi w
dt ( af, ) 061 J(' * i " d)U e ! d)U

+FTWTW oU + 7T wiweU + UT¢TwTiivgU

1 2UTTWIWoU + UTp™WTweU ) dm (B — 16)

Completing cur develcpment, the expressions for the potential energy are
presented organized similarly to the previous material,

‘3%5— = — [ + 6T W Gdm = - [FTW g dm — [UT$TW g dm (B—T)
l

The small motion equations are handled in a similar way, and are easy to

derive than large motion.

CKE _ [(TWTWF + TWTWoU + ¢TWTW D) (8-18)
2T

IKE _ [T TWr + oTWTWoU + $TWTWeD)dm (B — 19)
‘10 T

A (LKE _ [(pTWTWF + oTWTIF + oTWTWoU + ¢ TWTivel
auT
F20TWTWU + ¢TWTWoU + " WTWeU ) dm (B — 20}

L (SKE ) OKE _ [ oTwTyir + gTwTivgl
dt au’

ouT

6!




F20 W TWeU + ¢"WIWed ) dm (B - 21)

Potential energy,

h'z

LZE - UTerOdy - [ Wgdm (B —22)

ot
7!

(2 )

We can simplify these expressions further by fhe substution of tie second
time derivative of the coordinate transformation matrix W. The contributicus to
the coriolis and centripstai forces represented by . , termed tke residual accel-

erations. The contrivution to the general forces is represented by W, .

3

W= W,+ 3 W¢ (3-23)
i=l

For large motion,

. 3 -
JETWIO W&+ W 47, WT(Z W+ WD + 2, Tl U
=1

— - - 3 -
=Ty, Ty 4 ST Ty, Ty &
W, E4WWoU + 7w Iweu + UTo Wi ,} WE + W)U

\-A
B M«.

4 UTeTWIWSU + Urd™WIwelU — 7" wls Zg"w gl)am = F, (B —24)

For small :notica.

3 s - -
[ TWT(S WE+ W) + TWT(S WiE + W)U + 2rpTWTivgU
JiL-‘l j=l )
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+ ¢ WihwoU +TiCcrU — ¢ W' = 7, (B — 25)

Collecting terms =and arranging the coefficients the two Lagrange equations
can be written as the equations of motior for the large 2nd small generalized co-
ordinates. It is these equations which must be solved by computer sinrilation

code.
For the large motioir,

[ T R T
Frwiw rdm + i
¢ Jrrwiw,pUdm+ |, . [Fwiwedm + 7
= JfLiT¢TF'!/';{-W pUdm + 177 | [UTOTWIwgam |~
JuTe™wliw 7 dm
Fy= JFTWiWFdm — [FTW]W,gUdm 2" wlipTdm |
~[UTTwIWFdm — [UTo™WIW.pUam —2JUT¢" W v pUdm (B — 26)
+[rTwligam + [g"W ¢ Udm
For the small motion,
3 . . . . ) -
YUe™wiw Fdm + [¢"WTw oUdmIE, + [[6" W Wedm:U +
j=1

[26"W WodmlU + [[¢"W,édm + jTTCTax]U =

(B

!
bt
~3

N

[o"WTgdm — [¢"WT W rdm + F,
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By cefining

Mo (i) = [FTWIW ¥ d + [FTWIW ¢ Udm + [UTTWTW 6 U dm
+[UTSTWIWFdm  (i=i23) (=123
[P Twodm + (0775 Twdm

M= | [FTW 5k pdm + [UT6TW W dam
Fwlwedn + | UT¢TW§W¢de

e

M

vl
ng = 1”qn

My, = [¢TWTWhdm
G, = [2¢" W Wodm

K, = [ 1 pdm + |7 CTx

== Wi rdn - [FTwTW,oUdm — 27 Wiy Jdm

{‘q.

U TWIWFdm - [UTHT W T, oUdm -2 0T ¢Tw Wil dm
+ [T W gdm + [FTWpUan  (i=12,3)

Fo=[¢TW gdm — [¢"WTW 7 dm + F,

;q= [Fo Fpo Fa]*

The final equations of motion are written as

{8 — 28)
(B -- 29)
(% - 30)
(B - 31)
(8 —32)
(B — 33)
(8 —34)
(B — 35)
(B — 36)



—

¢+ M,, U+ G,

My &+ M, U

—

1

ctL -
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APPENDIX C. DERIVATION OF THE GENERALIZED FORCES OF
THE EQUATIONS OF THE MOTION

To derive the generalized forces the principle of virtual work is used. We first
write the transformation between global coordinates and local coordinates, Egs.
(C-1) and (C-2) respectively,

-

1 1 0 0 1
X1=]X; cos() sin(0) || x (C-1)
R4 Yo sin(6) cos(6) || v

t 1 0 0 1
x| =|—-Xycos(6) — Yysin(8) cos(d) sin(9) || X (C—-2)
|y Xpsin(f) — Ygcos(§) —sin(9) cos(d) || ¥

Frcm Egs. (C-1) and (C-2) we can find X and y.
x = —Xpcos(9) — ¥ sin(9) + X cos(d) + Y'sin(0) (C—3)
y = X sin(0) — Yy sin(0) + X sin(8) + Y cos(h) (C —4)

Taking derivative of the Eq. (C-3) and {C-4) doing necessary substations, we

can find,
dx = 0X cos(f) + &Y sin(0) (C-9)
dy = —dX sin(0) + 6 Y cos(6) (C—6)

Using the virtual work principle,

5W, = [ =T cos(5 + D(0))v(0)](50 + 5D(0))
+ [T cos(8 + D(0))]6x + [T sin(d + D0))](Sy + 6¥(0)) (C—7)

Based on small angle assumptions,
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cos(d + P(0)) =1 - (C ~8)
and
Sin(8 + ®(0)) = & + B(0) (€ —9)
Doing the necessary operations and substitutions, | .
811, = (T cos(6)—T# sin(6)--T(0) sin(8))5 + (T sin(6) + T4 cos(6) +
Td(0) cos(8))5 Y + ( — T(0))5(6) + (T + TOONév(0)
+ (~TH0)6D(0)) (-9

From Eq. (C-10), one can write large motion generalized forces (f‘}), ie., Eq.
(C-11) and small motion generaliZed forces (F],), i.e., equation (C-12),

T cos(0) — T4 sin(6) — Td(0) sin(B)]

Fy = | T'sin(8) + T6 cos(0) +Td(0) cos(6) (C~11)

~Tv(0) 4
= [T5+ TO@©) o
ru-—[ —T¥(0) ] (C—-12)
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APPENDIX D. COMPUTER SIMULATION CCDE

FRASVIFLHLHLBILBLAALVUBUAN Y DEFINITIONS OF VARIABLES $3%HABHI2L4BLUHHARLRIANG

P 0P af 0P o o o o P of 0P 2P o O o P P R P o0 0P o0 0P F OF .3 oP P 67 0P oP oD D of D P b 4B oP GO oo

at-7 ~The coefficients for the numarical integration

area =(ross sectiocnal area of the missile (m**2)

betal =Modal nods 1

beta2 <Mcdal node 2

count  =Constanc that defines the element positions in wvectors.
dtheta =Desired pitch angle(dgra)

dthetacot=Desired angular velocity (rc/s)

dt:heta2dot=Desired angular acceleration(rd/s**2)

delta =Control angle{dgrs)

E =Young’s modul.as {pascal)

épsllcn =Parametver for integration coeffirient

fn =Small motion force coefficlient matrix
flexible=Corstant that does the flexible part on and off
Inn =Reformed small rotion force coefficient matrix
fq ‘=large motion force trector

frime =Finish time of the inteyration
force =External force (Newton)

an =Gyroscaple —oefficient matrix
grav =Gravitationzi constant {m/s**2)
gravvec =Gravity matrix

h =Tima step used in the lategration

izz =pkment of inertiz about the z-axis(m**4) v
inta =Parameter o+ Integration coefficients

kn =Stifress matrix

k =Nurber of the colum of the matyix

kp. kv =The position and ve'loc!ty feedback gains
1 =Nurber of the row of the matvix
1force =Large moticn rorce vectcs

it =The length of the missile (meter)
lmn =Constant. {m*n)
nn =keformed small motion inerila and coupling coefficient matrix

mmn =Coupling inertia cofficlent matrix

e of =Large motion inertla coefficient matrix
mna =Constant (mi*area)

nphi =Shape function matrix

mphi2  =Secornd time derivative the shape function
s <ass densliy of the nissile (ky/m**3;

n =fmber of the Integration

ohi ~=Small motion slope position

phidot =Small motion slope velocity

pri2dot =Small motion slope acceleration

rigid =Constant that does the controller on and off
rlocal =lLocal vosition vector

%
%
%
%
%
%
3
%
%
%
%
%
3
3
%
$
%
%
%
%
%
%
3
%
%
%
]
$
%
%
%
%
%
%
%
L]
$
%
$
]
]
]
%
L]




WO P OF 90 I O o I 0 o P G P O 0P 0P TP R O K O I P P P R P O P PGP P R P P o o OO I B O R GO o op

q =Large wotion generalized position vector
qdot =large moticn gererallzed velocity vector
Rdot  =lLarge rotion generallzed acceleration vectc:
stif =Stifness matrix

sforce =Small motlon torce vector

slope

tenpflirst=Temporary matrix for the Simpson's rule
tenplast=Tenporary matrix for the Sirpson's rule

temgl...
tempd
temp?...
tenpil

theta =Large motion angular posicion (pitch angle-dgrs)
thetadot=Large mrtion angular velocity (rd/s)
theta2dot=Large motion angular acceleration (rd/s**2)
time =SeC

u =Small motion generalized position vector

udot =Small motion generalized velocity vector

u2dot  =S5mall motion generallzed acceleration vector

um =5mall motion position vector
umdot  =Small motlon velocity vector
v =3mall motion deflection position (m)

udot =Snall motion deflection velocity (m/sg)

v2dot =Small motlon deflection acceleration (m/s**2)
wresld =Residual acceleration matrix

wdot =Time derivative of the transformation matrix
wksi =The derivative of the transformation matrix with respect to the

X =Large motion x—direction position(m

X =lLocal x coordlnate

xgot =Large motion x~direction velocity(m/s) W,
x2dot  =Large motion x-direction acceleration (m/s**2)

N =lLarge motion y-direction position(m)

-ydot =Large motion y-direction velocity(m/s)
y2dot  =Large mction y-direction acceleration(m/s**2)

mnnl, knl,
kn2, fnl,
fn2, fn33,

gnl, mql,

fql, fq2 =Temporary matrices for the calculation of the coeificients

ci,c2,f1,

£2, £3, f4=Shape function counstants

w2, £22,
hz,b2,A,

B, F, tanpld,
temp20 =Temporary matrices for the controller

mll,mi2,
m21,m22,

f11,hl,bl=Constants for the controller

tplot

=Trajectory path slcpe

=JTamporary matrices for integration

=Tesporary matrices for large axd small motion coefficients

large motion generalized coordinates

-~ g
" g gs e #'##’0##&a’#aﬁ#ﬂtﬁd’#&dﬂ#&d’w##ﬁ#w#wd’*ﬁﬁ###ﬁ'###d’#‘”*

=Tima plot vector
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xplot =Lrga metion x—directicn position plot vector %
vyplot «L rge wotion y-direction posiclon plot: vector %
thetaplot=L: rge motion anguiair positicn plot vector %
xdotplnt =large rotion x-dirsction velority plot wector %
ydotplot =Large mokion y—-direction velocliy plot vector %
thetadctplot: Targe motion angular veleclity plot vector %
vplot =Sm11l motlon deflection pusition plot vector %
phiplot =5mw il motion slope position plot vector %
vdotplot =Smz11 motion defiection veloc!ty plot vector %
]
%
%
%
%
%
]

P ar' of o o

phidotplot=Sa 211 motion slupe velocity plot vector
Deltaplot =Coitrol angle plot vector
dtretaplot=De iired trajectory angular position plot vector

dthetadeg, dell adeg,
thetadeg =Anc les couverted from radian to degrees

0P P aP P &P P I D P P P

AR A R S e S S e R e R R R R R e A R A SR R T A S A AL R R 2 1

TEELBRFFARVLILLIL. LRRBH 6542838 MAIN PROGEAM RFHEIBHIRAEB4AILBLLELHIBLLEH934%%
% LEVEL 1 %
% Thiz 18 the coitrolling program for flexible missile. It defines che %
% variables, deteriines the coefficients for explicit !ntegration and mode %
% shape function, calles large and small motiorn moefficient matricey routines,$
% large arc small motion integration routines, contreller -outines, oatput %
% rcutines %
% %
E2 S R R R M e e e R R E A TR AT T

X, v, theta, xuot, ydot, thetadat, Im,betal,beta2, §,1z22, force, ...
ki, delta, v, Lota, epsilon, ftime, h, grav, aa, vdot, phidot, n, Inn, flexible, .
count,wmphi,mphi2, stit gravvec, rlocal, x2dot, y2dot, theta2dot, v2dot, . ..
phi2dot] = constantsl;

]

22, £22,0h2,02,A,F, B, d-heta2dot, dihetadot, dtheta, kv, ...
kp, vigid, cenpid, slope, anp20j=constant.sla;

[}, avdot, 2dot, tenpb, wresid, wdot, vksl, w, ...
lorce, sforce, vm, undot:, £1an, gn, i, ma, comnt 1, mil, mi2, m21,£11,hl, .
bl)=constantsia (X y,theta, xdot, ydot. thatadot, sedot, y2dot, theta2dot ) ;

{u, udot, uzdot, manl, kni, hin2, fal, fn2, £033, nan, gnl, Mgy, maa, .
fq, mpl; temp), tunp2, teng3, venpd, tempf, tevig. 7, mgnl, tenp8, £ql, tenp9, ...
templ0, £g2]1 = constantaily (v, phi, vdot, phidot, v2dot, phi2dot) ;

itplot, xplot, yplot, ...

thetaplot, xdotplot, ydotp lot, thdt adotplot, vplot, phiplot, vdot plot, ...
phizorplot, the adea, deltaplot, thetaplot, dthetadeg, deltadeg) =. .
constants3 (ftine, b ;

a0, al, a2,al, a4, a5,a6,al} =~ ccoef jepsilon, lota, h);
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{c1,c2,£1, £2, £3, £4]=mphicons {im, betal, beta?2) ;

for time = 0,0:h:ftime,
lw, wdot, wksi, wrasid. 1 force, sfcrce, um, umdot ] = wmatderivvailanc i, ..
theta, X, y, xdot, ydot , thetadot, force, phi, delta, v, vdot, phidot, . ..
wresid, wdot , wksi, w, 1force, sforce, um, umdot:? ;

(g, e, fq, fq2)=1rgcof (wksi, rlocal, mphi, un, w, 1force, wresid, ...
waot, undot, gravvec, ma, 1m, n, mag, mon, £q, mal, templ, egnl, ...
temp8, £ql, tapI, tenplO, Irm, c1, c2, £1, £2, £3, £4,betal, betaz, £q2) ;

if flexible=1,

{mn, gn, kn, fon)=smlcof {(nphi, w, mgn, mg, £q, wdot, wresid,mphi2, stif, ...
Jravvec, sforce, ma, lm, n, lmn, £nn, 9n, kn,mn, mnnl, knl, kn2, £nl, £02, tn33, ...

man, rlocal, ¢k, c2, £1, £2, £3, £4,betal ,beta2) ;

(v, udot, u2dot }=intsml (a0, al, a2, a3, 24, a5,a6,al, u,udot,u2dot,, . ..
tenpl, tenp?, tamp3, Lempd, tenpS, m, gn, fnn, kn) 7

end

(q,qdot, q2dot} = intlrgih, a0, a3, as, a7, mgn, may, £q, q, gdot, 2dot, ...
tenp6, u2dot) ; ‘

(X, y, theta, xdot, ydot, thetadot, v, pbi, vdot, phidot, x2dot, . . .
y2dot, thetaZdot, v2dot, phi2dotk ) =chvar {q, gdot., q2dot , u, udot, u2dot) ;

if rigid=1.
[delta,dtheta, temp0])=rigidcontrol (mcx, £fq2, force.theta, mil, mi2, m?1,m22, ...
£11,£22,h1,h2,b1,b2,A,F,B, dtheta2dot, thetadot, dthetadot, . . .
dtheta, kv, kp, tenpl4, time, slope, temp20) ;

end

{tplot, xplot, yplot, thetaplot, xdotplot., count, deltaplot, dthetaplot) =gploti...
court, time, X, y, theta, xdot, tplot, xpiot, yplot, thetaplot, xdotplot, thetacky, . ..
delta,deltaplot, dtheta, dthetadeg, dthetaplot, deltadeq) ;

{ydotplot, thetadotplot, vplot, phiplot, vdotplot, phldotplot, count J=gplot2{...
count, ydot, thetacdot, v, phi, vdot, phidot, ydotplot, thetadotplot, vplot, phiplat, .

wiotplot, phidetplot) ;

count 1=count 141

if counti=0, .
feroe=0;

e

if comntlw=D,

b ey e
t2=y;
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t3=heta;
t4=xdot;
tS=ydot;
t6=thetadot;
t7=v; .
t3=phi;
t9=vdot ;
t10-phidot;
tli=x2dot;
t12=y2doi:;
t13=theta2dot;
t14=v2dot;
t15=phi2dot;
tl6=delta;

clear X y theta xdot ydot thetadot v phi wvdot phidot delta

clear fnl fn2 fn33 fnn fq fgl gn gnl kn knl kn2 1force mn mnn
clear mnl mg mgnl ey mgql q gdot g2dct sforce tenpl tenp?2
clear tewp3 tempd tenpS tawp6 temp? tenp8 tenp? u udot u2dot
clear um undot w wdot wksi wresid countl tenplQ

clear x2dot y2dot thetaldot v2dot phi2dot

clear mll mi2 m21 £1 hi bl templl templ2 tenplld tempfirst temrplast

: : X=t1;
y=t2; !
theta=t.3;

' xcot=t:4;
ycdot=t5;
thetadot=t6;
v=t7;
phi=t8;
vdot=t9;
phidot=t10;
x2dot=til;
ty2dot=t12;
theta2dot=t13;
w2dot=t14;

“pitd2dot=t15;
delta=t1d;

[, gdot, g2dct, tempb, wresid, wdot , wkst,w, ...
lforoe,stnrc:e,un, udot, fon, gn, kn,mn, count 1, mll, ml2, m21, £f1,h1, ...
bl ]~constants2a (X, y, theta, xdot, ydot, thetadot, x2dot, y2dot,, ..

theta2dot) ;

{u, udot, u2dot, manl, knl, kn2, fnl, fn2, fn33, o, gnl, Mgy, mom, ..
fq, mggl, templ, temp2, tenp3, tonpq, tenpS, tenp?, i}, tenps, fG!, tenp9, ...
templ0} = constentsib (v, phi, vdot, phidot, v2dot, phi2dot) ;
erd
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[plotl,plot:2,plot3,plot4,plot5,plot6]=allplot1 (tplot, xplot, yplot, ...
t;hit:glot; ’ xgotplot, ydotplot, thetadotpleot, dthetaplot)

plot7, plot8, plot9, plotl0, plotll)=allplot2 (tplot vplot, phiplot
vdotplot, phidotplot, deltaplot) ' PIpIOts -

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% IEVEL 2 3
% This function determines constant values and initial values of the %
% variables and matrices. %
% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%\%%%%%%%%%%%%%%%%%%%%%%% FEE3E3332BBBILLIIAEIREY

function [X,y,theta,xdot, ydct, thetadot, 1m, betal, beta2, E, {z2, force, ..
phi,delta,v, jota,epsilon, ftime, h, grav,ma, vdot, phidot, n, lrm, flexible, ..
count , mphi , mphi2, stif,gravvec, rlocal, x2dot, y2dot, theta2dot, v2dot, ...
phi2dot]) = constantsl

area=0.0113097;
Tn=A;
betal=4.712398/1m;
bota2=7.853981/1ry;
count=0;

delta=0; ~
E-2.0e+ll;
epsilon=0.25;
flexible=l;
force=30000;
frime=0.4;
grav=-9.8066;
h~0.001;

jota=0.5;
{2z=0.00001G178;
o= 1861.05;

107

Im=tnvn;

- areatny;

phi=0;

phidot=0;
theta-pl/4;

t het adot=0;

% 0;

»odot=0;

vy

wiot={;

yoot=0;

y i .
nphi=zeros(3,2);
nphi2=zeros (3, 2);
otif=zerds (1) ¢
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stif {7, J)=Erizz;
gravvec=zeros(3,1);
gravvec (3j=grav;
rlocal=2eros (3, 1);
w2dot=0;

y2dot=0;
theta2dot=0;
v2dot=0;

phi2dot=);

TRILLLTLALALANAELATRRTEATHELTLRUATHLTARANLBATAULRALBTLILTIBREIBBLLLLLTRRAEILNY

%
% This function detarmines constant values and initial values of the %
% variables and matrcices. %
% %
TEIIELELLHRERTILHATASSLLLHBLALUBRTLATAELLUTETALALHAVILEHEALLLHTBILHTSLHTALREUNS

L

functionim22, £2::,h2,b2, A, F, B, dtheta2dot, dchetadet, dtheta, kv, . ..
kp, rigid, templd, slore, tenp20) =nnstant.sla

w2 2=0;

£22=0;

p2=0); ;-
b?=0;

&0;

¥=0;

B0y

dthet 2200t =0,

dthet actrr =);
dtireta-0.7854; %45 Degree
ky=6;

K 9

rigla=i;.

towpld=-zeros {2y ;

S, pem-2 T HN
tesp20=0;

:‘t\“%\““\&\\““\“l“t“M“\\\“\\“\“l\\\\“““l“1\“““%““\\\““
1
%  This function detemmines constant values and initial valves of the %
% variables and matrices. %
%
“““\“““““t“\“““\““\\\“W\\\“\““‘»M““W\\““H““““\H\

function (g, qdot, g2dot, tempé, wresid, wdot, wkai W,
lforce, sforce, um, umdat., ton, gn, kn, my, count 1, mil, m12, m21, f1y,hy, ...
bll=constantsa (X, y, theta, xdot, ydot, thetadot, x2dot , y2dot, thet a2dot §




- q:=zeros(3, 1) ;
qdot=zeros {3,1);
q2dot=zercs{3,1);
tenpé=zerxcy(3,1);
wresid-zeros (3) 2
wilot=zeros (3) ;
wksi=zeros (3, 9) 3
w=zeros (3) ;
1force=zeros(3,1);
sforce=zeros (2,1;;
ur=zeros{2,1);
unlot=zeros (2,1);
fin=zeros (2, 1)
gn=rexos{2);
kn-zeros(2);
mn=zeros{2);

count 1=0;

q(ly=u;

q(2)=y;

q(3) =theta;

qiot (1) =xdot ¢

ot (2) =ydiot ;

qdot {3) =thetadot ;
q2dot (1) =x2dot ; r
q2dot (2)=y2dot ;
q2dot (3)=theta2doc;
mll=zeros{2):
ml2=zerosi{2,1);
m2i=zexos(l, 2);
fll=reros(2,1);
hi=zeros(2,1);
bl=zeros(2,1);

TEERLLLALAGLABBACACHLALINELARAULUALEBLRATLEALHAAAINALALARLIULALLAILAEHLLLANY

% %
* This function detemmines constant values and initial values of the %
% variables and matrices. %
3 %

STELLLALLELLLLLALALEARTHALLATATALBLTLHATLALALLAHLATLLBALLARLLHLLILRLTEARAAGS

function {u, wiot,u2dot.,mwnl, knl, kn2, tnl, £n2, fn33,mwn, gnl, mag, mgn, ...
fq.mygl, tanpl, tenp?, tarp3, tanpd, tenS, temp?, mgnl, terpd, £q], tewp9, . ..
terpl0, IqR] = constant a2b (v, phi, vdot, phidot, v2dot,, phi2dot)

u=zeros{2,1);
udot=zeroe (2,1) ;
uwZdot=zeroa (2, 1) ;
wni~zaros(2) s
knl=zeroa(2)
knZ=zeros (2)
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fnlvzeros (2,3}
fnZ=zeros(2,1) s
tnl3=zeros(2,1);
nmzeros {2} ;
giilezeros {2},
mypezeros (3) 7
mymzeros(3,2) ;
fg=zeros (3,1) 3
myl~zeros (3);
tonpl=zeros (2,1);
tenpl=zeros (2,1) ;
te"Pmm (2; i)
tenpé-zerxos (2,1} ;
tenpd~zeros 12, 1) ;
tapi=eros i3) ;
nplezeres(3,2) s
tenp@ezeros (3) ;
f‘ﬂ“wm 3, 1)
fq?=zer08(3,1) 5
tamp9=zeroa (3) ;
tengA0=2r08 (3) ;
U (1)

u(2)=phi;

uciot (1 =adot ¢ r
ucdot: (2) «phidiot
v2dot (1) =v2ctor »
u2dok. (2} =whi 2ot 3

STERRRRLCUBRHEAATHRAATLABABLTLLATLLLLLALTEBLALLAATRUR L AILLIALTAL UV LU AGANRUNY
\

%
$ This function determines tha inltisl values of the outp-it matrices. %
% %

SELTLELHRUILLRALLHABUVLRALEALRBTLLATLRLCURLVALCAILLAARLUUALRTHALLDATATACLILLLN

function {tplok,xpliot,ypiot, ...
thetaplot, sdotplot, ydotplot, thet adatplot, vplet, phiplot, vdotplot, . ..

phidotplot, thet adeg, deltaplot, dihetaplot, dihstaceg, deltadeg) = ...
constants3 {ttiee, h)

tplot=geros (), (fhime/h) #1)
splotwzeros{l, (ftivme/h) 41},
vplokszeros {1, (Ftina/b) +1};
thetaplot=zwros {1, (ftim/hy+i);
xdot plot=aarcs (1, (Ftive My 1)
ydetplol=zeros (1, (€7 dme/d 413 ¢
thetadotplot=zeros{l, (Erima/h) 4i);
vplot=2zerns (1, (Etise/h) 41}y
phipfocszarcs (1, (Stima/h) ¢ 1};




vdotplot=eros {1, {Etime/h) +1) ;
phidotplote=zers: ‘1, {(ftime/h) +1);
thetadeyg=0;

deltaplot=zerc: time/h) +1);
dthetaplotezar: ftime/h}+1) ;
dthetadeg=0;

deltadeg=0z

SHETRTHRIRATALEVELLHULALRABLELLLDLHALRLLLULEDAIALLTLBLBALLLLHHILBTLARLGBHRLRR%
% %
¥ Formulating tha coefficients usad in the sequenti2l integration method. %
L] %
LEEATATLLLALALALAAATRLELLLALALLRVLLALAHLTTINLLAINABTL R VLRI TRTULT R LU LA HIRIN0L%

function [a0,al,a2,a3, a4,a5,a6,a7] = cooef (epsilion, icta, h)
20=1/ {ey-silon* (h*h) ) ;

al=lota/ (epeilon*n);

a2=1/ (epsilon*h);

a3=0.5/epsilen-1;

al=icta/epsilon-1;

ab=h/2* (a4-1);

aG=h*{1-icta);

al={iota*h;

TERRRRALALARABLATLUALLBLALENISLULALLTALALATRETATILALLALEHRBUATILATORALRABEALLLLY
% )
%+ Formulating the coefficients uszd in the mode shape function matrix. %
% L

TIATAFCHABEHTHATULALEALEALLLARRSBUBATAGIATALILALRNBARABLLLRBIUIUNARLALLA SRS

function {cl,c2,11,£2, £3, f4)=wponicons (Im, oetial, beta?l

cl=(sin(betal*lm)-sinh (betal*lm))/ (~cos (betal *im) tcosh (batalvlm) ) ;
Cc2=(sin{bata2* im) ~sinh (beta2*lm) ) / (~cos (bet a2 * Lm) +cosh (bel a2 * Lm) ).
e=2*beta2-2* (¢2/cl) *betal;

f1=1/(2*cl) + (c2*betal) / ({c1"2) te);

f2=-(c2/{cl%e));

£ 3 (betal/ {cl*e)) s

fi=1/e;

TERRALRAABALOULLATARACIAALILLATRIVANEELTARALALALTINLTNALRRNEAVTANIRALBIRVRRA5
% L
% This function calcuvlates the matrices wilch changes with time. %
% ]
SEARLARLLLRLRAREALALEDAADAALHVLLOLELLEHOABLRERIRINULELBRMEILTEDILILIBUERRANRG



functidon [w, wdot, wkai, wresid, 1 force, sforce, um, undotj=. .
weatderiveeriant {Cheta, X, v, ndot, ydot, thwtadot, force, phi, daita, v, ...
ot phitdot, wraa i, waol  wisl, w, Lforce, sforos, um, smviot)

FRAPALARALBEGRGASINHLFENRRELLEBALHENILEOHAIRLISABAIGLBUALALBABARITBELRRABURLLRE
% Corputation of the transformation satrix w %
%%%ﬂs%%%%%%%H%W%%%H%%%%%%%%%%%%%%%%%%%%%%%is%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wi{l,1)=1; '

wiz,1)=X;

w(2,2)=cos (theta);

w(Z,3)=-r {(theta);

w(3, 1)=yu

w(3,2)=sin{theta);

w{3, 3)=cas (theta) ;

$ELRBRRLALABHRILLLBAREIRVELHBIBLBAB R cBIRBBABLIRLIFLATRLELAIILHABTHERALRRR%43
3 Corpucation of the time derivative of the transformatlion matrisx WOOT %
PEIHTERLFLUITBELARBATRLABLLRD2BRBILBVLRRBLETI2LRLRBBLRLHBLBLTLRITITLEADRALE%4L
wdct (2, 1) =xdot

wdot: {2, 2) =—thetadot*zin (theta) ;

wdot (2, 3) =—thetadot *cos itheta) i

wdot (3, 1)=ydot:;

wdct {3, 2) =thetadot.*cos (theta) ;

wdoL'(B, K} n—tl‘ﬁtadol:;sin {theta);

FELEALBAGGEASBTTILLBTEBATLALRGTLRTARHEVILLHABIDRTLBBALELBLRBBLIBLBLBBEBITFHRLL%
¥ Corpoetation of the derlvative ¢f the transformation matrix with respect %
% to X, Y, theta: WKSI %
FERIBLRABRALRDETIRTADILALERLULBURRALLDIRALFLLBRBETABLBUBEFARLFLBLBEETBLBBEH32%3%
wksi{2,1)=1; .

whii {3, 4)=1; :

wksl (2, 8) =—ain{theta) ;s

wkai i3, 8 =cos (“iwta),

vkl (2, §)=—rogithe:taj;

wksi {3, 9)=—gin{theta);

SERLLLBRTFRATRULATGRERALLLAVIILRALLATHATTLLLRARALALHTTLALRLRLEBBLL L HRABRBTUNEL
3 “ampitation of the the residual acceleration matrix WRESID %
TTERESBALIBUATAASARLBLLBETREILALLBCHLEALUCHUTAORRERRERLLIILORRTRIRLIRBAREREES
wresid(Z, 2} = (thetadot ~2) *cus (theta) ;
wresid(2, 3j=(thetadot~2) *sin(theta) ;
wresid(3, 2) = {thetadot *2) *sin (theta) ;
wresid{?, 3)= (thetadot *2) *cos (theta) ;

TRERTLHLRAAIBANNRABANARALATHENABLIRRIIINANLBLLEIULLASALLARARIRLRRAIRLASLLLRLLS
% Computation of the large motfon force matrix )
STELABAVERNRBAGRBARRILRNTUEALAILIELATRLLLILLRRANALRATIRILAILRERRILILAERILTAILN
THorce (1) ~force* (cos (theta) ~delta*sin (theta) -phi‘sin(theta ) ;

itorce () =force* (slaithets) tdelta*cos (Lheta) iphl *cos (theta) ) 5

lforce (3)=—foroetv;



FEEAIRTRLBLLBBARTBALBRLLLIVEBLLLLLIVLLIRNLERIRABLALAEBBEIBTRLLURTR LRI BIBUULLS
¥ Computation of the small notion force matrix %
A i R A A A A A R R R R R R R R R A E R A AT S A AR e R A 1

sforce (1) =force* (phitdelta);
sforce (2) =v*force;

FEELLAVLHACHLBAALHBLLBLTLIIRLALLTIRLLIBLRVLEVIRIRLBLILVULGAATL LB VLLHLRLIB249%

% Computation of the small wmotion poslition vector %
R A A A A e E R A R R A R A A A R T R R R AR R R L A 11

wn({ly=v;

un(Z)=phis
FEEEBELRLALBLBRFBLLETRAAAVLLRERTLBHIRRLLLLLRBBLHLBAIIBVLRRLIRLHBARBLLLLLIRRRL%8%
% Conputation of the small motion velocity vector %

FEELREHRTABLBALLBLLAVILALLLLADLRLTAIBLBALALTUDDLABLRVIBLLTEBHBLEBHLLTIBBU%44
undot (1)=vdot;
undot (2) =phidot;

Ly A T A A R A A A R A L
% %
$ This functlon calculates values for the large motion coefficient matrices$
% %
$REFRTLIRLILHLBAALIBALLALLIALLTRBEIBHBALIRLIILARTEHBLIBLTTRRBABLBAABBA RGN

~

’

function {meg,inmn, £, f2)=1rgcof (wksi, rlocal,nphl, um,w, 1force, ...
wresid, wdot, undot, gravvec, ma, lm, n, maq, man, fq,mggl, tenp?, mynl, ...
tenp8, fql, temp9, templO, Imn, cl,c2, £1,£2, £3, £4,betal, beta2, fq2)

Y Ly T e A T R R AR A AR A A R A
% Creating the coefficlent matrix for MX %
FEEEEEHEATEERIRBLEIRLATLEALBEILRATLABLLLIADLALBILLLLSLABRRSLIRSRRELLHLELH0%
for i=1:3,
templ=wksi {z, 3% (1-1) t1:3*4);
for J=1:3,
temp2=wksi (:,3%(}-1) +1:3*J);
tenp7=tenpl ' *tenp?;
mepgl (4, J)=quadmat (*astringll’, 1,1,n, 1ma,ma, cl, c2,betal, beta?, £1,£2,€3, ...
£4,mphi, 0,0, xlocal, Lawpl, tog?, v, 0,0,0,0, tenp7,0,0, . ..
b' 0,0);
encd
erndd
ey e i) g

‘i\\%\i\\t\\%\\\\\l\h‘“\\‘\\\%&’\\\\“\b\\’i%i\\\ii‘i\\\%’H%\‘“%‘i%\%\\\\%\%%%\‘ﬂ%

% Creating the. coefficlent matrix for MH 3
FITEEERLBALTLARARALARSATAEARAALHULANLLEARTRLHALELLRABURRLLRLRITLBURBLRRLRINGS

for 1'»*-‘1:3,
tespreadksl (o, 34 (4-1) +1:3%1) ¢
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tenpl=tenp’ *w; i
gl (4, 2) =quadmat ('astring22',1,2,n, 1m, ma, cl, c2,betal, beta2, £1,£2,£3, ...

£4,nphi,w, 0, x1local, 0, 0, un, terp, 0,0,0,0, terps,0,0,0,0) ;
end .
mgFna® (mgnl) » o,

L Ty e A A A A T R S A A R R A A S A
% Creating the coefficient mayrix for FQ %
Y Ly T I e R A T R Rt S A AR SRR A
Computation of the FQ coefficlent
for 1=1:3,
temp=wksl {2, 3% (1-1) +1:3%]);
temgstelm'*wrvggéd: '
AR 3 .
?Zﬁi?ﬁ;‘;mt('a;trinqn', 1,1,n, ln/n,ma, cl,c2,betal, beta2, £1,£2, €3, £4, . ..
rehi, 0, wresid, rlocal, 0, 0, um, tep, wdot, undot , gravves, 0, 0,tenp9, ...
tenpl0,0,0);
axd
fq2=ma*fql;
fq-fZ+1force;

EA A R R R A R A A N A A TR R A L A R A A A R A T A R A A B R T A A A

% 9,
% This function’calculates values for small notion coefflcient matrices. %
% %

LA AR A R A A A A T R R A R R A A R A L A A S A T A A TR A S A R A AR R A

function [mn, gn, kn, fnn)=smlcof (nphi, w, mem, may, fo, wot, wresid, rphiz, ...
stif, gravvec, sforce, ma, 1, n, I, £rn, gn, kn, mn, menl, knl, ...
kn2, fnl, £n2, £n33,mmn, rlocal, cl,c?, £1,£2,£3, £4, betal ,beta?)

LR A R T A R A A A R LR S A R R A A A AR AN R R AR Yy
% Creating the coefficient matrix M
LA A A A A A I A R A A A A R A R A R SR A R A N AR YR Y Y
man=quadinat ('astringd44*, 2, 2,n, bnn,ma, cl,c2,betal, beta, £1,12,£3, €4, ...

nphi, w,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ;
ryui =maten;
weEmnnl g ' Y inv (ogg) *mapy

LRI R R R AT A A R A A N R R A A R A A A A T A A TR A R R A SR R T TR Y
% Creating the coefficfent matrix N %
SEREBRILBRAAPVRAUALRHACLILLRATFRUBBTARRRLULBDSAVRVIBIIBBEIRETIRRHIRBARRREREBR40
gnl=gquadmat {'astring55',2,2,n, lmy, ma, cl, c2,betal, beta2, £1, 62, £3,£4, ...

mphi, w,0,0,6,0,0,0,wiot,0,0.0,0,0,0,0,0);
gn=ma*gnl;

FRRBARVIETRIRSALAABLDVULETVIRLRAIIDVLALTBRALBRRAGVRBABTIDR2BBRBRBVURTBRBIRRRRVE

3 Creating the coefficlient natrix KN )
BEEALDLEBURPLAIAVLIEROLBRENORILTRRBBILBBLIBRBFRINRRARBURVRERRRAREBRTRRABRBRBNRG%
knl=cpiadmat (*ast cing66', 2,2, n, Inn,ma, cl,c2, betal, beta2, 11,142,173, 4, ...

80



mphi, w, wresid, 0,0,0,0,0, 0,0,9,9,90,0,0,0,0);
kn2=quadnat {‘astring7?7',2,2,n, im,ma,¢1,c2,betal, beta2, €1, £2, £3,14, ..

9,0,0,90,0,0,0,0,0,0,0,0,0,0,0,nphi2,stif);
kr=ma*knl+kn2;

SRR AR AL A R RS T AR AR R A R AR A IR S TR A TR R A IR R A A A A R A A R A TR R S A 1A A

$ Creating the coefficlent matrix FN i
L T T T T T T A A R T I A A S A A A RIS T

fnl=quadinat ('astring88',2,1,n, lm,ma,cl,c2,betal, beta2, £1,£2, £3, f4,mphi, w, ...
wresid, rlecal, 9,0,90,0,0,0,gravvec, 0,0,0,0,0,0) ;
tn33=ma* (fnl) + sforce;

fnn=fn33-ngn’ *inv (mm) *fq;

Ty Y T T I T T A A R T A S A R R T A A ALY
% %
% This function implicitly integrates the small motion equacion. 3
% %

FEHAEBBILHABLALLTHAAATILABLALDISBALATHREILANBLF LIRS ATBEBHITNR TR LLHABIURIHILL

function [u, udot,u2dot )=~intsml (a0, al, a2, a3, ad, a5, a6, al, u, udot, .
uZdot, tenpl, tenp2, tenp3, tenpd, tapS, ma, gn, fnn, kn)

tapl=z0*uta2tpdot +ta2*u2dot;
tenp2=al *tutad*udot taS*ru2dct )
tenp3=mn*tampl;
tenpd=gn*temnp?;
tenpl=frn+temp3l+tenpa;
tewp2=u;
teng.5=kn+al*mn+al*gn;
tenpl=tearnpb\tenpl;

u=tespl ;

tenp3=u2dot;

uZdot=al* {u-tenp2) -a2*udct-ad*tenp3;
udot=uchot tabrtenp3tal*u2dot;

LI A Y R A R A N N A N A S R IR SN
% ,
¥ ihils function explicitly lnteyrates the lagyc motion evmation,

% y
TAILFVRTLRTADLVIVLVIBLICRILUHBRAUTABERRBLRBDRBLRRIRLTIIBERBIRBTFRR BRIV 00

function {q,qiot, q2dot j=intligt,a0, a2, a6, al, myn,negy, Lo, q, qlot, ...
q2dot, tepbd, u2dot)
«q qthrcdot tad*g2dot /al;

piot =it +ab*q2d
tenpb-tenpbimp*u2dot ;
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Fon=fop-tenpt;
aqrdot=1nv (mgy) * £grae
cuiot=cdot tq2doat*a’i;
g iag2dot./at;

FAEHABFERUVLTEABLIUARLVCHILLLABABLATIABLVLLTEIRARLLHIBLLHTLABLBUBLLIRHAT 24005
%

o2

% This function updates the clwe dependent values. %
% %

SRR B TR TR AR SR AN T A AR RN AR A S SR SR A SRS A £ R A EE AR SRRV EY R4 .60 TR R 11 X 110

frinction [X,y, theta, xdes, ydot, thetadot, v, phi, vant, phidot, x2dot, ...
yedot, thetaZdot, v2dot, phi2dot j=chvar {q, qdot, g2dot, v, udot, u2dot.}

¥=qi{l);:

yq(2);

theta=gid) ;
sdot=qriot. (1) 2
yoot=qdot (2) ;
thetadot=~giot (3) ¢
x2dot=q2dot: (1) ;
y2dot=qédot (2} 3~ ~
that aZdot=dot (3} ;
vl

phi=u(2);
vdot=udot (1) ;
phidel-axdot (2} 2
vZ2cht=uldot (1} ;
phi2dot=uldot (2) ¢

LA R A e A T R A T A A A R 2 A T
1 M
¥ Thig function controls rigld or flexible missile with rigld-body
$ controller, The control agle{delta) lg limited to 10 degrees.

% .
L3 T R e A A A A N A R R R A T A A A A A R R R R AN AR N R TR AR AT A AR A A MR R A

function[delta, dtheta, tenp20)=rigidcont rol {mxy, £32, torce, theta, mil, w12, ...
21, m22, £11, £22,h],h2,bl,b2, A, 7, B, dthetaldot, thet adot, dihetadot, ...

deheta, kv, kg, tenpld, time, slo e, tenp204

if (time >= 0) & (time < 0.1,
dthetaZdot=0;
it hetadot=4;
dthetapt/4;
tenp20=ctheta;
elseif time >= G.1,
i hetaldot=0;

32



dthetadot=slope;
dtheta=tenp20+slope* (time-0.1} ¢
ad

mll(3, 1) =mgyil, 1) 2
ml1{1,2)=mg3(1,2);
mll(2, 1)»mpy(2,1) 7
mil(2,2)=nq(2,2);
ml2 (1)=mog(1,3)
ml2{2)=my3(2,3);
m2] (1)=mp@(3,1);
m21 (2) =mg3(3,2';
n22=tnay (3, 3) ¢

£11 (1) =£92(1) 2
£11(2)=f32(2) ;
£22=£c2(3) ;

hl (1) =force*cos (thetu) ;
hi {2} =force*sin (theta);

bl {1)=-force*sin(theta);
bl 2y =force*cos (Lheta);
tenpld=inv (mll);
A-22-m21*templ4*ml2;
£=£22-m21*tenpl4* (F11+4h1)
B=m2} *tenpld*bl;

delta=-inv (B) * (A* (dtheta2dot-kv* ({thetadot —dihet adot ) -kp* (theta-. ..
dtheta)) -F};

1f delta >= 0.174532 , 310 degree
delta=(0.174537;

ot

if delta «= -0Q.174532,
delta=-0.174532;

elseif (delta < 0.174532) | (ulta > -0..74532),
delte-deltez;

end

TERTTLBARLALEUALANERNAINEREILREIRVNETALRRBLTHHLRARRBTLNLSTATHERRRIRRTORARNINIOL:
3 %
3+ Tuis function calculates the elarvents of matrices for outpat %
% %
FERERRFAEALALRHARARBLRLLTALTLALERLLRTIRTNRLALARRRVIRLVRLHTRTLARTTRELI L0834

function  [tplot, xplot, yplot, thetaplot, xdotplot, count , deltoplat, ...
dthetaplot] =golot (count, time, X, y, theta, ot tplot. xplot . yplot, ...
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thetaplot, xdotplot, thetadeg, delia, daltapiot, dtheta, dthetadey, ...
dthetaplot, deltadeg)

count=count41
thetadeg="180*thete) /pl;
dthetadeg=(180*dtheta) /pi:
deltadeg= (180*delta) /pis
tpiot {count)=tine;

x¥plot (count ) =X;

ypiot fcoant) =y;

thetaolot (count)=thet adeyg;
rctorplot (count ) =xdot ;
daltaplot (count ) =deltadeu:
ditheftaplot (count ) =Gthetadeg;

$ESEALEARFLATATURIRALLEAB LI EILHAETHIERTURBLIHBALALHLILIRLTBLH UL LARRBIALA4%%%

% %
% Thie function calculatos the elements of matrices for output $
%

%
SEFETERARDASILILGLLZEETILREBLHALERVELTHALLRATRRAASLLAVLRVHANSNTED Lo BRIV HNNNG

function {ydotplot, thetadotplot, vplot, phiplot, wdotplot, phidotplot, cotnt =, ..
gplot? {count, ydot, Ehetadot, v, phi, vdot, phidot, ydotplot, thetaoacplow, ..
vplot, phiplot, vdotplot, phidotplot)

" ydotplot {count } =ydot ;
thetadotplot (count} =thetadot ;
vplot (count) =v;

phiplot (count } =phl;

vdotplot (ocomunt ¥ =wket

phidot ploy {count }=phidot ;

LIS AL T R R A R I A R s R A A R T R T A N AN Y

% %
& This function plots cthe output grapha. %
%

t
FERLERLVNALBAUATARARERVTAILALILVRTRBABANLLARTONRLTRLBRUVLVRERHNBLHARTRLAATLE%

function [plotl, plotZ, plot3, piott, plotS, plot6)=al lplotl tplot, xplet, yplot, . ..
e aplol, xdotplot, ydotplot, Chetadotplot, dihetaptot)

plotIrglot (tLplot, xplot), pause

plor 2op ok (tplot, yolot) , oause

plotd=plot (tplot, thet apiat, * -7, tplot, Rhetap o, 't '}, pauso
plotd=plct {tplot, xdot plot}, pause

plot Splot {tplot, ydot plot); nouse

plotH=piag {tplot, thetadot ol ot ), prwasea

2]



SR e st e v

TP

FEEEELTIHLEATIALAIALLLFBTLLIBRILAIBTLRRLBLHLLLLLRLLIBLRLVELLALVDBLVLTLLH99%

% %
% This funcktlon plots the cutput graphs, %
% %

FAIBEETRLBRLLLLALLITALLLITLLLATLAULLUBLLANLHATLAIRLTLDTLLUTUILLALBLBVLHRRHRT4NR

function {rlot7,plot8,plotd,ploktll, plotll)=allplot.2(tplot, vplot,phiplot, ...
vdotplot,phidotplot, deltaplot)

piot7-plot {tplot, vplot},pause
plot8-plot {tplok,phiplot), pause
plot9-plot (tplot, wdotplot), pause
plotl0-plot (tplot, phidotplot) ,pause
plotll=ploc (tplot, deltaplot), pause

FELRLCIERILLBLLLABTLILRLERLRITHBIBBLLGRUBRALHABLIVLLIDLTILLLBLLTRIRDHBLLLIB4%%%
% LEVEL 3 %
% This funclion will integrate the coefficient matrioes of small and large %
¥ moticn over the length of the missile using Simpson's integration method., % -
% %
FERBLLLERLRTLATURRTHALLLRLRBLLLNLLLRULUTLRRLUBRLLLRD L LLLHLILRDLBLLBLLLEI4%%%

finction as = cpadmt(F, 1, k, n, int, ms, cl,c2, betal,bota?, ...
€1, 72,13, £4,mphi, w, wresid, rlocal, templ, temp2, um, temp, wiot , umdot,, . . .
gravvee, Lapd, tenpd, tanpl, templO, mphi 2, st if)

tespll=zrrogl, k) ; .
teep 1 Dameros (1, k) ;

templd-zsrosil, k) ;

tanpf i st=reros(1,k);

tempiastszeros(l,kj;

na=zevos (1, kY,

wi);

for i=1:n,
x=yviint
teplt (G, k* {(L-1)+1: L*k) =feval (F,x,cl, c2,betal beta?, 21,52, £, 14, ...
rphi, w,wres'd, rlocal, tenpl, t ap2, um, tamp, rlocal , wdot, unk L, ...
Ggravvec, tanpd, tenpd, tamps, tenpl O, myhiZ, at i£) -

ad
for m= 1:k,
for o= 2225 {1}, '
repi2i,m) e ol 2 (0w ¢ terpll (o, k{3 -1) ww;
s
au



v

for p= 1l:k,
tor 3= 3:25in-1},

templ3{:,p) = temli(:,p) + templl?i:, k*(j-1)4p);
end )

eri

tempfirst (5, 1:ki=templl(:, 1:k);
tenplast &2, 1:k)=templl {:,n*h-{k~1) :n*k) ;

aa=(int/3)* (tenpfirst +4*templ 3+2*templ2 ttemplast) ;

THITEALBLEALARLHALARTALRLU2LDLRLTLBALTLTLLARALBHLLTLTLLTLRBLLLLLLIRLTULHEL09%
q

% %
% This functlon creates the product of watrices for integration of MX) %
¥ coefficienc metrix. %
% P

BITEFEARBARTLRRRLHLBIBHTVRLRLIPLHARIVALLRATIELBIRLAGHLLLELRABLILHUVRALRLLR%2%%

fonction yil=astringll {x,cl,c2,betal, beta?, €1, £2, £3, f4,nphi,w, ...
wresid, rlocal, tan:i, tenp2, um, tenp, rlocal, wdot , uncdot, gravvec, temo7, ...
tenpd, tenpd, tane D, aphi2, st f)

ny Wi (3, D) ={1*(ci* {cosbaeta’ *x} tcounbotat*x) Y tslalbetal sy i.. .
sinh{becal*x 4 £3*% (2% (cos (bet aZ*xi vcosh (beta2?y) ) +...
sin{beta2*x)1sinh (beta2*x));

aphi (3, 2)=£2* {c1* (cos (betal *x) tcosh (betal*x) ) 1 sin(betal*x) +. ..
sinhbetal*x)) 114* (2% (cos (beta2*x) tcosh (oetaZ2*x) )+, ..
sin(betaz*n) tsinh (bheta2*x)) ;

viecal (1) =1,
r1ocal (2) =x;
3

yil=rlocal'*toenp?*-local triocal ' *temp ) fmphi "t un *nphi A teneo?s |
ny bl fambum *apnt tenp A locat;

CAEEREERTAANRRRRRARTO LR RILLDRLTRRLALRVRCLLTTRARBLLRLRTIITLR BRI

% *
T This function creates the product of matrices wor Inteyration of MN L)
¥ coefflcient matrix. )
% b )

FLBERARRACLABALTUABRLLRLLABTALAIRRALANUTRAHUREIUARLALALALELIIRLANNL RN

fonction y22=astring22 (x,cl,c2,betal, beta2, €1,02, €3, £4, npbi,w, o
wiesid, rlocal, tanpl, tenp2, v, tesyy, 1 local, wiot, wniot, gravvec, tenp?, o ..,
tenpd, tenp?, templQ,mphi2, ot L)

uphl (3, D) =f1% {cl* (cos (batal *x) tcosh (batal*x) ) tsin(betal*x) ...

B



sinh(betal*x))+£3* (c2* {cos (beta2*x) +cosh (beta2*x) ) +...
sin{betaz*x)+sinh (beta2*.z));

mphi (3, 2)=£2* (C1* {cos (betal*x) +cosh (betal*x) ) +ain (betal *x) +. .,
sinh(betar*x)) +fd* (c2* (cos (beta2*x) tcosh (beta2*x) ) +...
sin(beta2*x) +sinh {beta2*x)) ;

rlocal {(1)=1;
rlocal (2)=x;

y22=rlocal ' *temp8*mphi+um* *mpil ' *temp8*nphi;

EELTETSFTUDRIDBUBETRPLABTHRRTARLTLLRLLAILAVLLLLLRABTUALLLLLLBAFRRLRHLBRE4H43

% %
% Ihis function createz the product of matrices for integration of FQ %
% coefficient matrix. %
% %
SELEEILRTTLRREALILALRLATRLIALAIEETUTLERRLLLTULLRILRIRTLEBALABRTTLLBHIBIERRN4S

tunction y33=astring33(x,cl,c2,betal beta?, £1, £2,£3, f4,mphi, w, ...
wrosid, rlocal, templ, tenp2, um, tenp, rlocal, wdot, undot, gra -+ ¢, tenp?, ...
tenpf, terp?, tenpl 0, nphi 2, st if)

npi £3, 1) =£1*% (cl* {cos (betal*x) icoshibetal«x) ) tsin (betal*x)
dnhibetal*x) y+£3% (02* {cos (heta2hx) to sshi{beta2rx) )y 1. ..
sin (beta2rx) +sinh (betaz x) ) ;

npehl (3, 2)=02* (12 (Ccos (et ai* %) teoshibetal *x) ) tsin(betal*x) v,
sinh (betal*x) ) $£4* (027 (Cos tetalbx) tcosh et a2* ) ) ... ,
sin(beta2*xy +sinh(beta2*n) ) ;

tiocal (1) =1.0;

rlocab{2) =

yite-rlocal/tenp9rrlocal-rlocal ' Atermp®inphil *um-2*r local " *lenpl 04, L
g hi faanckot um® Aophd A tenp9rrlocal con frphi A tenpOtaghit fuan-24

vun' neh A tenplOfnoh] fumdot trlocal 'Y enp' Agravvec igr avvec ALampt L

mphil fuang

TULBERIERNATARALNATINLALALULNIRLLACTRNLARERIRLRARERRARLARLRLR IR IRRALIA 008

L X

? 1)
¥ This function creates the praduct of matrices tor fntegratfon of MY ]
¥ oooefficlent matrix. %
) %

BELITHANARBARBERAAAAARERLEBLEATLRRLALSAANRNRLERRLLA LRI RO RLATRRRRLAINNR AN

fond tion ydd=astring44 (v, b, c? . betal, ket 22, F1, £2, 63, f4. 00 hi, W, .
wtesld, rlocal, teampl, tenmp2, um, Lenp, rlocal, wdot , um 1, ray s t eyl
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tenp8, tep9, tenpl0,mphi2, stif)

mphi (3, 1)=£1* {ci* (Cos (betal*x) tcosh (baetal*xr) ) 4sin(betal*x) +. ..
sinh {(betal*x) ) +£3* {c2* (cos {beta2*x) +cosh (beta2*x) ) +...
sin(beta2*x) +sinh (beta2*xj);

nmphl (3, 2)=£2*% (c1* (cos (betal *x) +cosh (betal*x) ) +sin (betal*x) +. ..
sinhibetal*x) ) +r4* {c2* (cos (beta2*x) +cosh (beta2*x) ) +.. .
sin(beta2*x)+sinh (beta2*x));

vdd=nphi *w! fwraphl;

R A I T T R Y T T TP Trrey

N %

% This function creates the procct of matrices for integration of N %

% coefficient mateix. %

% %
%

B A T T T Trer T ey

function yS55=astring55(x,cl,c2,betal,beta?, fi, £2, £3, fa,mphi,w, ...
wresld, rlocal, tenpl, temp2, um, tenp, rlocal, wdot, undot, gravvec, tenp7, ...

tmp8, tenp9, terpl 0, nphi2, stif)

nphi (3,1) =f1* (c1* (cos (betal *x) +cosh (betal*x)) +sin (betal*x) +. . .
sinh(betal*x) ) +£3*% (c2* (cos (beta2*x) +cosh (beta2*x)) +. ..
sin(betaZ#*x) +sinh (beta2*x)) ;

nphi (3, 2) =f2* (c1* (cos (betal *x) +cosh (betal*x) ) +sin (betal*x) +. ..
sinh(betal*x) ) +£4* (€c2* (cos (beta2 *x) +cosh (beta? )., J
sin{betaz*x) tsinh (beta2*x));

y =2 nphi  *w ! fudot *nphi ;

‘i,'.’;'L%%%%%%%%l%%%‘H%’H‘k%%%%%%%%%%%%%%%l%%%%%%i%%%%%%%%%%%%%%%%%%%%%%%t%%%%%‘%%%k

% ]
§ Thiz function creates the product of matrices for integration of KN L3
% coefficient matrix. : %

t

% ‘
‘%.‘.’.’.’.‘8%%%%%’H%%%%%%%‘S%%%%%%%%%%\’s%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!%%%%%%%%%%%%%%%%%

function y66=astring66 (x, cl,c2,betal beta2, 1,2, 3, f4,mpht,w, ...
wicsid, tiocal, tenpl, besp?2, um, tenn, rlocal, wdot, unot, gravvec, teags?, ..

Lenpl, tenpS, templ G, ophii2, st it)

gt (2, T =£17 {el % (cos (Bebal *x) tcosh (betal Aebdisinbetat )b,
Sinh (Fetalfx)y 4+ £3% (C2® {cas (betalZ*x) tcoshibetal*x) )+, ..

sinheta2*x) tginh (et a2 x) Vs

B8




wphi (3,2) =f2% {cl* (cos (betal *x) +cosh (betal*x) ) +sin(betal*x) t...
ainh (betal*x)} +£4* (c2* (cos (bet.a2*x) +cosh{betaZ*x)) +...
sin(heta2*x) +sinh (betaz*x) )z

y66-1phl * *w® *wresid*mphi;

FLUTLEELRLLRLILLRLATELLRTHILRALLLTHALARBLLLLVRILLLALLEHRBLLL LR RLLRILL DR

3

% %
% This function creates the product of matrices for integration of KN %
% coefficlent matrix. %
% %

FEAULHRASAIBALLALLLLELBALALVURLADITLDLLLIBUVLTHLLABILLEBBALRVHRL LRIV BIINY

function ylT=astringl7 (x,cl,c2,betal,betaz, f1, £2, £3, £4,mphi,w, ...
wresid, rlocal, templ, tenp?2, um, temp, rlocal, wdot . umdot, gravvec, tenp7, .. .
tenp8, tenp9, templ0, rphi?2, stif)

mphi2 (3, 1)=f1* (betal”2) * (c1* (~cos (betal*x) +cosh (betal*xj) ...
~sin(betal*x) +sinh (betal*x) ) +£3* (beta2”2) *{c2*...

(-cos (beta2*x} +cosh (beta2*x) ) —sin (beta2*x) tsinh (beta2*x) ) ;

mphi2 (3, 2)=£2* (betal”2) * (c1* (~cos (betal*x) 4cosh (betal*x) ) ...

~sin (betal*x)+sinh (betal*x) ) +£4* (beta2”2) * (c2*...
{~cos (beta2*x) +cosh (beta2*x) ) —sin {(beta2*x) +sinh (beta2*x) ) ;

yTl-nphi2' *stif*aphi2;

FELEEREFRABRTVRETELILLATIRLLLRBLDARLLRLRIRLLBURLLRRILTLLLBURTLILLBRBBBLIBERHLLY

% ” %
% This functlen creates the product of matrices for integration of FN %
% coefflclent matrix. %
% 3

THUEEIEHERRRBALBULBEUBLLLBAREILLRLARATHLBRLALVLALVUBLBRLEBBURARRLLARALLLRAULLA

function yBB=astringBB (x,cl, c?, betal, beta?, £f1, 2, £3, £4,nphi, w, ...
wrosid, rlocal, templ, tenp?2, um, tenp, rlocal, wdot , undot, gravvec, tengp?, ...
tonpB, tenp9, tamp 0, mphis, stif)

meht (3, 13=F1* (c1* (cos {(betai*x) 1cosh(betal*x} ) taln{betal*x) ¢, ..
sinh(betal*x) ) +£3% {c2* {cos (beta2*x) +cosh (beta2*x)d +. ..
sin(botaZ*x) tainh(betaZ*x) ) ;

myhi (3, 2)=£2* {c1* {con (betal*x) tcosh(betal *xy b asin(betal»xyt, .
sinh(betal*x b4 (c2* (cog (bata2*x) tcosh (betaZix) Y i. ..

sin(betaZ*x) tsinh{beta2*x) );

rlocal ()=l

RQ



rlocal (2)=x;
A}

. yE8=mphi ' *w' *gravvec-mphi ' *w' «wresid*rlocal;
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